Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37050186

ABSTRACT

Miscanthus × giganteus demonstrated good phytostabilization potentials by decreasing the trace elements (T.E.s) mobility and enhancing the degraded soil quality. Nevertheless, most of the published work was performed under controlled conditions in ex situ pot experiments and/or with soils being spiked. Hence, data about the plant's tolerance to increased T.E. concentrations in real conditions is still scarce and requires further investigation. For this sake, a field experiment was established by cultivating miscanthus plants in three different agricultural plots representing gradient trace element (Cd, Pb and Zn) concentrations. Another uncontaminated plot was also introduced. Results showed that T.E. concentrations in the leaves were tolerable to the plant. In addition, no variations were detected between the miscanthus cultivated in the contaminated and uncontaminated soils at the level of antioxidant enzymatic activities (ascorbate peroxidase and superoxide dismutase), photosynthetic pigments (chlorophyll a and b and carotenoids), and secondary metabolites (phenolic compounds, flavonoids, anthocyanins, and tannins). These outcomes validate the high capacity of miscanthus to resist and tolerate contaminated conditions. Such results may contribute to further understanding of the miscanthus tolerance mechanisms.

2.
Mutagenesis ; 38(1): 43-50, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36342121

ABSTRACT

Bosnia and Herzegovina (B&H) is among the European countries with the highest rate of air pollution-related death cases and the poorest air quality. The main causes are solid fuel consumption, traffic, and the poorly developed or implemented air pollution reduction policies. In addition, the city of Sarajevo, the capital of B&H, suffers temperature inversion episodes in autumn/winter months, which sustain air pollution. Human biomonitoring studies may be confounded by the lifestyle of subjects or possible metabolic alterations. Therefore, this study aimed to evaluate Ligustrum vulgare L. as a model for air pollution monitoring by measuring DNA damage at one rural and two urban sites. DNA damage was measured as tail intensity (TI) in L. vulgare leaves, considering seasonal, sampling period, leaf position and staging, and spatial (urban versus rural) variation. Effects of COVID-19 lockdown on TI were assessed by periodical monitoring at one of the selected sites, while in-house grown L. vulgare plants were used to test differences between outdoor and indoor air pollution effects for the same sampling period. Significantly higher TI was generally observed in leaves collected in Campus in December 2020 and 2021 compared with March (P < 0.0001). Outer and adult leaves showed higher TI values, except for the rural site where no differences for these categories were found. Leaves collected in the proximity of the intensive traffic showed significantly higher TI values (P < 0.001), regardless of the sampling period and the stage of growth. In regards to the COVID-19 lockdown, higher TI (P < 0.001) was registered in December 2020, after the lockdown period, than in periods before COVID-19 outbreak or immediately after the lockdown in 2020. This also reflects mild air pollution conditions in summer. TI values for the in-house grown leaves were significantly lower compared to those in situ. Results showed that L. vulgare may present a consistent model for the air pollution biomonitoring but further studies are needed to establish the best association between L. vulgare physiology, air quality data, and air pollution effects.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Adult , Humans , Air Pollutants/adverse effects , Comet Assay , Bosnia and Herzegovina , Communicable Disease Control , Air Pollution/adverse effects , Environmental Monitoring/methods , Particulate Matter
3.
Plants (Basel) ; 11(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35406924

ABSTRACT

The positive impact on restoring soil functionality, decreasing toxic elements (TE) bioaccessibility, and enhancing soil physicochemical and biological parameters established a consensus on considering a Miscanthus × giganteus convenient species for phytomanaging wide TE contaminated areas. Nevertheless, information about the plant's mode of reaction to elevated soil multi-TE concentrations is still scarce. For the sake of investigating the miscanthus response to stressful TE concentrations, an ex-situ pot experiment was initiated for 18 months, with three miscanthus cultivars referred to as B, U, and A planted in soils with gradient Cd, Pb, and Zn concentrations. A non-contaminated control soil was introduced as well, and plants were cultivated within. Results revealed that the long exposure to increasing soil TE concentrations caused the number of tillers per plant to decline and the TE concentrations in the leaves to boost progressively with the soil contamination. The photosynthetic pigments (chlorophyll a, b, and carotenoids) were negatively affected as well. However, the phenolic compounds, flavonoids, tannins, and anthocyanins, along with the antioxidant enzymatic activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase elevated progressively with the TE concentration and exposure duration. Conclusively, miscanthus plants demonstrated an intensified and synchronized antioxidative activity against the TE concentration.

4.
Plants (Basel) ; 10(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34685846

ABSTRACT

Miscanthus × giganteus demonstrated good phytostabilization potentials in toxic element (TE) contaminated soils. However, information about its tolerance to elevated concentrations is still scarce. Therefore, an ex-situ pot experiment was launched using three cultivars (termed B, U, and A) grown in soils with a gradient Cd, Pb and Zn concentrations. Control plants were also cultivated in non-contaminated soil. Results show that the number of tillers per plant, stem diameter as well as leaf photosynthetic pigments (chlorophyll a, b and carotenoids) were negatively impacted by soil contamination. On the other hand, phenolic compounds, flavonoids, tannins, and anthocyanins levels along with the antioxidant enzymatic activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase increased in the plants grown on contaminated soils. Altogether, these data demonstrate that miscanthus is impacted by concentrations of toxic elements yet is able to tolerate high levels of soil contamination. These results may contribute to clarifying the miscanthus tolerance strategy against high contamination levels and its efficiency in phytoremediation.

5.
Ecotoxicol Environ Saf ; 214: 112125, 2021 May.
Article in English | MEDLINE | ID: mdl-33714138

ABSTRACT

Phytomanagement is proposed as a cost-effective and environmentally-friendly suggestion for sustainable use of large metal-contaminated areas. In the current work, the energy crop miscanthus (Miscanthus × giganteus) was grown in ex situ conditions on agricultural soils presenting a Cd, Pb and Zn contamination gradient. After 93 days of culture, shoot and root growth parameters were measured. Soils and plants were sampled as well to study the TE accumulation in miscanthus and the effects of this plant on TE mobility in soils. Results demonstrated that miscanthus growth depended more on the soils silt content rather than TE-contamination level. Moreover, soil organic carbon at T93 increased in the soils after miscanthus cultivation by 25.5-45.3%, whereas CaCl2-extractible TEs decreased due to complex rhizosphere processes driving plant mineral uptake, and organic carbon inputs into the rhizosphere. In the contaminated soils, miscanthus accumulated Cd, Pb and Zn mainly in roots (BCF in roots: Cd " Zn > Pb), while strongly reducing the transfer of these elements from soil to all organs and from roots to rhizomes, stems and leaves (average TFs: 0.01-0.06, 0.11-1.15 and 0.09-0.79 corresponding to Cd, Pb and Zn respectively). Therefore, miscanthus could be considered a TE-excluder, hence a potential candidate crop for coupling phytostabilization and biomass production on the studied Metaleurop TE-contaminated soils.


Subject(s)
Metals, Heavy/metabolism , Poaceae/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Biomass , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Stems/growth & development , Plant Stems/metabolism , Poaceae/growth & development , Rhizosphere
6.
Ecotoxicol Environ Saf ; 199: 110654, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32402897

ABSTRACT

Miscanthus x giganteus is suggested as a good candidate for phytostabilization of metal-polluted soils. Its late harvest in winter generates large amounts of leaf litter on the soil surface. However, little is known about the mobility and the bioavailability of metals following leaf decomposition and the consequences on the succeeding culture. Ex situ artificial aging for 1, 3, and 6 months was conducted with miscanthus leaf fragments incorporated into three agricultural soils displaying a gradient concentration in Cd (0.6, 3.1 and 7.9 mg kg-1), Pb (32.0, 194.6 and 468.6 mg kg-1), and Zn (48.4, 276.3 and 490.2 mg kg-1) to simulate the leaf litter input over 20 years of miscanthus culture. We investigated the impacts on physicochemical and biological soil parameters, CaCl2-extractable metal, and their subsequent ryegrass shoot concentrations, and hence on ryegrass health. The results showed that the amended soils possessed higher pH along with greater available phosphorous and soil organic carbon values. The respiratory activity and microbial biomass carbon in the amended soils increased mainly after 1 month of aging, and decreased afterwards. Despite the higher Pb- and Zn-CaCl2 extractability in the amended soils, the phytoavailability slightly increased only in the most contaminated soils. Moreover, leaf incorporation did not affect the ryegrass biomass, photosynthetic pigment contents, nor the antioxidative enzyme activities. Conclusively, leaf incorporation induced slight variations in soil physicochemical and biological parameters, as well as metal extractability, but not to an extent that might cause a considerable threat to the subsequent culture. Nevertheless, these results are preliminary data that require confirmation by long-term in-situ experimentations as they reflect the modelization of long-term impact of leaf decomposition on soil-plant system.


Subject(s)
Metals, Heavy/analysis , Models, Theoretical , Poaceae , Soil Pollutants/analysis , Soil/chemistry , Biodegradation, Environmental , Biological Availability , Biomass , Lolium/growth & development , Lolium/metabolism , Metals, Heavy/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Poaceae/growth & development , Poaceae/metabolism , Soil Pollutants/metabolism
7.
Article in English | MEDLINE | ID: mdl-31561901

ABSTRACT

The enzyme-modified comet assay is a commonly used method to detect specific DNA lesions. However, still a lot of errors are made by many users, leading to dubious results and even misinterpretations. This technical note describes some critical points in the use of the enzyme-modified comet assay, such as the enzyme concentration, the time of incubation, the format used and the equipment. To illustrate the importance of these conditions/parameters, titration experiments of formamidopyrimidine DNA glycosylase (Fpg) were performed using the 2 gels/slide and the 12 minigels/slide formats (plus the 12-Gel Comet Assay Unit™). Incubation times of 15 and 30 min, and 1 h were used. Results showed that the 12 minigels/slide system requires a lower volume and concentration of Fpg. A longer time of incubation has a bigger impact when using such format. Moreover, the paper describes how to perform and interpret a titration experiment when using the enzyme-modified comet assay.


Subject(s)
Comet Assay/methods , DNA-Formamidopyrimidine Glycosylase/pharmacology , Titrimetry/methods , 8-Hydroxy-2'-Deoxyguanosine/analysis , Alkylating Agents/toxicity , Cell Line , Comet Assay/instrumentation , DNA Damage , Dose-Response Relationship, Drug , Electrophoresis, Agar Gel , Gels , Humans , Lymphocytes/drug effects , Reproducibility of Results , Time Factors
8.
Mutat Res Rev Mutat Res ; 781: 130-164, 2019.
Article in English | MEDLINE | ID: mdl-31416573

ABSTRACT

The comet assay has become one of the methods of choice for the evaluation and measurement of DNA damage. It is sensitive, quick to perform and relatively affordable for the evaluation of DNA damage and repair at the level of individual cells. The comet assay can be applied to virtually any cell type derived from different organs and tissues. Even though the comet assay is predominantly used on human cells, the application of the assay for the evaluation of DNA damage in yeast, plant and animal cells is also quite high, especially in terms of biomonitoring. The present extensive overview on the usage of the comet assay in animal models will cover both terrestrial and water environments. The first part of the review was focused on studies describing the comet assay applied in invertebrates. The second part of the review, (Part 2) will discuss the application of the comet assay in vertebrates covering cyclostomata, fishes, amphibians, reptiles, birds and mammals, in addition to chordates that are regarded as a transitional form towards vertebrates. Besides numerous vertebrate species, the assay is also performed on a range of cells, which includes blood, liver, kidney, brain, gill, bone marrow and sperm cells. These cells are readily used for the evaluation of a wide spectrum of genotoxic agents both in vitro and in vivo. Moreover, the use of vertebrate models and their role in environmental biomonitoring will also be discussed as well as the comparison of the use of the comet assay in vertebrate and human models in line with ethical principles. Although the comet assay in vertebrates is most commonly used in laboratory animals such as mice, rats and lately zebrafish, this paper will only briefly review its use regarding laboratory animal models and rather give special emphasis to the increasing usage of the assay in domestic and wildlife animals as well as in various ecotoxicological studies.


Subject(s)
Comet Assay/methods , Animals , DNA Damage/drug effects , Environmental Monitoring/methods , Humans , Models, Animal , Vertebrates , Whales
9.
Mutat Res Rev Mutat Res ; 779: 82-113, 2019.
Article in English | MEDLINE | ID: mdl-31097154

ABSTRACT

The comet assay, also called single cell gel electrophoresis, is a sensitive, rapid and low-cost technique for quantifying and analysing DNA damage and repair at the level of individual cells. The assay itself can be applied on virtually any cell type derived from different organs and tissues of eukaryotic organisms. Although it is mainly used on human cells, the assay has applications also in the evaluation of DNA damage in yeast, plant and animal cells. Therefore, the purpose of this review is to give an extensive overview on the usage of the comet assay in animal models from invertebrates to vertebrates, covering both terrestrial and water biota. The comet assay is used in a variety of invertebrate species since they are regarded as interesting subjects in ecotoxicological research due to their significance in ecosystems. Hence, the first part of the review (Part 1) will discuss the application of the comet assay in invertebrates covering protozoans, platyhelminthes, planarians, cnidarians, molluscs, annelids, arthropods and echinoderms. Besides a large number of animal species, the assay is also performed on a variety of cells, which includes haemolymph, gills, digestive gland, sperm and embryo cells. The mentioned cells have been used for the evaluation of a broad spectrum of genotoxic agents both in vitro and in vivo. Moreover, the use of invertebrate models and their role from an ecotoxicological point of view will also be discussed as well as the comparison of the use of the comet assay in invertebrate and human models. Since the comet assay is still developing, its increasing potential in assessing DNA damage in animal models is crucial especially in the field of ecotoxicology and biomonitoring at the level of different species, not only humans.


Subject(s)
Invertebrates/genetics , Whales/genetics , Animals , Comet Assay/methods , DNA Damage/genetics , Humans , Models, Animal
10.
J Exp Bot ; 69(22): 5561-5572, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30215761

ABSTRACT

Human activities generate environmental stresses that can lead plant populations to become extinct. Population survival would require the evolution of adaptive responses that increase tolerance to these stresses. Thus, in pseudometallophyte species that have colonized anthropogenic metalliferous habitats, the evolution of increased metal tolerance is expected in metallicolous populations. However, the mechanisms by which metal tolerance evolves remain unclear. In this study, parent populations were created from non-metallicolous families of Noccaea caerulescens. They were cultivated for one generation in mesocosms and under various levels of zinc (Zn) contamination to assess whether Zn in soil represents a selective pressure. Individual plant fitness estimates were used to create descendant populations, which were cultivated in controlled conditions with moderate Zn contamination to test for adaptive evolution in functional traits. The number of families showing high fitness estimates in mesocosms was progressively reduced with increasing Zn levels in soil, suggesting increasing selection for metal tolerance. In the next generation, adaptive evolution was suggested for some physiological and ecological traits in descendants of the most exposed populations, together with a significant decrease of Zn hyperaccumulation. Our results confirm experimentally that Zn alone can be a significant evolutionary pressure promoting adaptive divergence among populations.


Subject(s)
Biological Evolution , Brassicaceae/drug effects , Brassicaceae/physiology , Selection, Genetic , Soil Pollutants/adverse effects , Soil/chemistry , Zinc/adverse effects , Adaptation, Biological , Environmental Pollution/adverse effects
11.
Mutagenesis ; 32(3): 397-408, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28340065

ABSTRACT

The International Comet Assay Workshops are a series of scientific conferences dealing with practical and theoretical aspects of the Comet Assay (single-cell gel electrophoresis)-a simple method for detecting DNA strand breaks. The first paper describing such an assay was published over 30 years ago in 1984 by Swedish researchers O. Ostling and K. J. Johanson. Appropriately, the theme for the 2015 meeting was looking to the future: 'The Next 3 Decades of the Comet Assay'. The programme included 25 oral and 43 poster presentations depicting the latest advances in technical developments as well as applications of the comet assay in genotoxicity testing (in vitro and in vivo) and biomonitoring of both humans and the environment. Open discussion sessions based on questions from the participants allowed exchange of practical details on current comet assay protocols. This report summarises technical issues of high importance which were discussed during the sessions. We provide information on ways to improve the assay performance, by testing for cytotoxicity, by using reference samples to reduce or allow for inter-experimental variation, and by standardising quantification of the damage, including replicates and scoring enough comets to ensure statistical validity. After 30 years of experimentation with the comet assay, we are in a position to control the important experimental parameters and make the comet assay a truly reliable method with a wealth of possible applications.


Subject(s)
Comet Assay/methods , DNA Damage , Animals , DNA Repair , Environmental Monitoring , Humans , Plants/genetics
12.
Curr Drug Targets ; 17(12): 1438-51, 2016.
Article in English | MEDLINE | ID: mdl-26424389

ABSTRACT

Cardiotoxicity is a serious complication of anticancer therapy by anthracycline antibiotics. Except for intercalation into DNA/RNA structure, inhibition of DNA-topoisomerase and histone eviction from chromatin, the main mechanism of their action is iron-mediated formation of various forms of free radicals, which leads to irreversible damage to cancer cells. The most serious adverse effect of anthracyclines is, thus, cardiomyopathy leading to congestive heart failure, which is caused by the same mechanisms. Here, we briefly summarize the basic types of free radicals formed by anthracyclines and the main processes how to scavenge them. From these, the main attention is paid to metallothioneins. These low-molecular cysteine-rich proteins are introduced and their functions and properties are reviewed. Further, their role in detoxification of metals and drugs is discussed. Based on these beneficial roles, their use as a new therapeutic agent against oxidative stress and for cardioprotection is critically evaluated with respect to their ability to increase chemoresistance against some types of commonly used cytostatics.


Subject(s)
Antibiotics, Antineoplastic/adverse effects , Cardiomyopathies/etiology , Metallothionein/pharmacology , Animals , Anthracyclines/administration & dosage , Anthracyclines/adverse effects , Antibiotics, Antineoplastic/administration & dosage , Cardiomyopathies/prevention & control , Cardiotonic Agents/pharmacology , Drug Resistance, Neoplasm , Free Radical Scavengers/pharmacology , Free Radicals/metabolism , Heart Failure/chemically induced , Heart Failure/prevention & control , Humans , Metallothionein/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Oxidative Stress/drug effects
13.
Front Genet ; 6: 216, 2015.
Article in English | MEDLINE | ID: mdl-26175750

ABSTRACT

The systematic study of genotoxicity in plants induced by contaminants and other stress agents has been hindered to date by the lack of reliable and robust biomarkers. The comet assay is a versatile and sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Due to its simplicity and sensitivity, and the small number of cells required to obtain robust results, the use of plant comet assay has drastically increased in the last decade. For years its use was restricted to a few model species, e.g., Allium cepa, Nicotiana tabacum, Vicia faba, or Arabidopsis thaliana but this number largely increased in the last years. Plant comet assay has been used to study the genotoxic impact of radiation, chemicals including pesticides, phytocompounds, heavy metals, nanoparticles or contaminated complex matrices. Here we will review the most recent data on the use of this technique as a standard approach for studying the genotoxic effects of different stress conditions on plants. Also, we will discuss the integration of information provided by the comet assay with other DNA-damage indicators, and with cellular responses including oxidative stress, cell division or cell death. Finally, we will focus on putative relations between transcripts related with DNA damage pathways, DNA replication and repair, oxidative stress and cell cycle progression that have been identified in plant cells with comet assays demonstrating DNA damage.

14.
Sci Total Environ ; 527-528: 91-9, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25958358

ABSTRACT

Arbuscular mycorrhizal fungus (AMF)-assisted phytoremediation could constitute an ecological and economic method in polluted soil rehabilitation programs. The aim of this work was to characterize the trace element (TE) phytoremediation potential of mycorrhizal Miscanthus × giganteus. To understand the mechanisms involved in arbuscular mycorrhizal symbiosis tolerance to TE toxicity, the fatty acid compositions and several stress oxidative biomarkers were compared in the roots and leaves of Miscanthus × giganteus cultivated under field conditions in either TE-contaminated or control soils. TEs were accumulated in greater amounts in roots, but the leaves were the organ most affected by TE contamination and were characterized by a strong decrease in fatty acid contents. TE-induced oxidative stress in leaves was confirmed by an increase in the lipid peroxidation biomarker malondialdehyde (MDA). TE contamination decreased the GSSG/GSH ratio in the leaves of exposed plants, while peroxidase (PO) and superoxide dismutase (SOD) activities were increased in leaves and in whole plants, respectively. AMF inoculation also increased root colonization in the presence of TE contamination. The mycorrhizal colonization determined a decrease in SOD activity in the whole plant and PO activities in leaves and induced a significant increase in the fatty acid content in leaves and a decrease in MDA formation in whole plants. These results suggested that mycorrhization is able to confer protection against oxidative stress induced by soil pollution. Our findings suggest that mycorrhizal inoculation could be used as a bioaugmentation technique, facilitating Miscanthus cultivation on highly TE-contaminated soil.


Subject(s)
Agricultural Inoculants/physiology , Poaceae/physiology , Soil Pollutants/toxicity , Trace Elements/toxicity , Biodegradation, Environmental , Metals/toxicity , Mycorrhizae , Poaceae/drug effects
15.
Environ Sci Pollut Res Int ; 22(4): 3043-54, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25231741

ABSTRACT

The in situ stabilization of metals in soils using plants with great biomass value is a promising, cost-effective, and ecologically friendly alternative to manage metal-polluted sites. The goal of phytostabilization is to reduce the bioavailable concentrations of metals in polluted soil and thus reduce the risk to the environment and human health. In this context, this study aimed at evaluating Miscanthus × giganteus efficiency in phytostabilizing metals on three contaminated agricultural sites after short-term exposure under greenhouse conditions and after long-term exposure under field conditions. Particular attention was paid to the influence of Miscanthus cultivation on (i) Cd, Pb, and Zn fractionation using sequential extractions and (ii) metal bioaccessibility using an in vitro gastrointestinal digestion test. Data gave evidence of (i) different behaviors between the greenhouse and the field; (ii) metal redistribution in soils induced by Miscanthus culture, more specifically under field conditions; (iii) higher environmental availability for Cd than for Pb and Zn was found in both conditions; and (iv) overall, a higher bioaccessible fraction for Pb (about 80 %) and Cd (65-77 %) than for Zn (36-52 %) was recorded in the gastric phase, with a sharp decrease in the intestinal phase (18-35 % for Cd, 5-30 % for Pb, and 36-52 % for Zn). Compared to soils without culture, the results showed that phytostabilization using Miscanthus culture provided evidence for substantial effects on oral bioaccessibility of Cd, Pb, and Zn.


Subject(s)
Metals, Heavy/pharmacokinetics , Poaceae/growth & development , Poaceae/metabolism , Soil Pollutants/pharmacokinetics , Soil/chemistry , Biodegradation, Environmental , Biological Availability , Chemical Fractionation , Humans , Metals, Heavy/analysis , Soil Pollutants/analysis , Time Factors
16.
Mutagenesis ; 30(1): 37-43, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25527726

ABSTRACT

In plants, an increasing interest for the comet assay was shown in the last decade. This versatile technique appears to be promising to detect the genotoxic effect of pollutants and to monitor the environment. However, the lack of a standardised protocol and the low throughput of the assay limit its use in plants. The aims of this paper are to identify key factors affecting comet assay performance and to improve its reliability and reproducibility. We examined the effect of varying several parameters on four different plant species: broad bean (Vicia faba), white clover (Trifolium repens), English ryegrass (Lolium perenne) and miscanthus (Miscanthus x giganteus). The influence of both internal (different nucleus isolation methods, presence or absence of filtration and lysis steps) and external (room temperature, light intensity) parameters were evaluated. Results clearly indicate that short chopping is more efficient to isolate nuclei than the standard slicing method. Filtration and lysis steps were shown to be unnecessary and thus should be skipped. Data also demonstrate that high room temperatures and light could induce DNA damage in isolated nuclei. Calibration tests with H2O2 or ethyl methanesulfonate revealed that a special attention should be paid to plant growing stage, leaf position and exposure duration.


Subject(s)
Cell Nucleus/genetics , Comet Assay/methods , DNA Damage/genetics , Plants/genetics , Ethyl Methanesulfonate , Hydrogen Peroxide , Light , Lolium/genetics , Reproducibility of Results , Temperature , Trifolium/genetics , Vicia faba/genetics
17.
Rev Environ Contam Toxicol ; 232: 1-44, 2014.
Article in English | MEDLINE | ID: mdl-24984833

ABSTRACT

As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and biomolecules. Heavy-metal-induced ROS cause lipid peroxidation, membrane dismantling and damage to DNA, protein and carbohydrates. Plants have very well-organized defense systems, consisting of enzymatic and non-enzymatic antioxidation processes. The primary defense mechanism for heavy metal detoxification is the reduced absorption of these metals into plants or their sequestration in root cells.Secondary heavy metal tolerance mechanisms include activation of antioxidant enzymes and the binding of heavy metals by phytochelatins, glutathione and amino acids. These defense systems work in combination to manage the cascades of oxidative stress and to defend plant cells from the toxic effects of ROS.In this review, we summarized the biochemiCal processes involved in the over production of ROS as an aftermath to heavy metal exposure. We also described the ROS scavenging process that is associated with the antioxidant defense machinery.Despite considerable progress in understanding the biochemistry of ROS overproduction and scavenging, we still lack in-depth studies on the parameters associated with heavy metal exclusion and tolerance capacity of plants. For example, data about the role of glutathione-glutaredoxin-thioredoxin system in ROS detoxification in plant cells are scarce. Moreover, how ROS mediate glutathionylation (redox signalling)is still not completely understood. Similarly, induction of glutathione and phytochelatins under oxidative stress is very well reported, but it is still unexplained that some studied compounds are not involved in the detoxification mechanisms. Moreover,although the role of metal transporters and gene expression is well established for a few metals and plants, much more research is needed. Eventually, when results for more metals and plants are available, the mechanism of the biochemical and genetic basis of heavy metal detoxification in plants will be better understood. Moreover, by using recently developed genetic and biotechnological tools it may be possible to produce plants that have traits desirable for imparting heavy metal tolerance.


Subject(s)
DNA Damage , Environmental Pollutants/toxicity , Metals, Heavy/toxicity , Plants/drug effects , Reactive Oxygen Species/metabolism , Chemical Phenomena , Lipid Peroxidation/drug effects , Plant Proteins/metabolism , Plants/chemistry , Plants/genetics , Plants/metabolism
18.
J Environ Manage ; 143: 123-34, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24905642

ABSTRACT

The mitigation of potential health hazards and land scarcity due to land use change can be addressed by restoring functional and ecosystem services of contaminated land. Physico-chemical remediation options are criticized as being costly and not providing environment-friendly solutions. The use of plants and associated microorganisms could be a sustainable, cost-effective option to reduce pollutant exposure. Phytomanagement aims at using valuable non-food crops to alleviate environmental and health risks induced by pollutants, and at restoring ecosystem services. Suitable plant species must be tolerant to contaminants, reduce their transfer into the food chain, and efficiently produce marketable biomass. Based on Miscanthus' capacity to sequestrate inorganic contaminants into the root system and to induce dissipation of persistent organic contaminants in soil, these plant species are favorable for phytostabilization and phytodegradation. Among Miscanthus species, the noninvasive hybrid Miscanthus × giganteus, with a high lignocellulosic content, is a promising biomass crop for the bio-economy, notably the biorefinery and bioenergy industries. Planting this species on contaminated and marginal land is a promising option to avoid changes in arable land use to mitigate the food vs. biofuel controversy. Key issues in promoting sustainable management of Miscanthus sp. on contaminated land are: (a) crop suitability, integration, and sustainability in a region with a potential local market; (b) site suitability in relation to the species' requirements and potential, (c) biotic interactions in the landscape diversity; and (d) increase in shoot yields in line with various stressors (e.g., pollutants, drought, cold temperatures), and with minimal inputs.


Subject(s)
Biodegradation, Environmental , Poaceae/growth & development , Poaceae/metabolism , Soil Pollutants/metabolism , Biofuels , Biomass , Chimera , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Ecosystem , Environmental Pollution , Metals/pharmacokinetics , Plant Roots/metabolism , Poaceae/genetics , Risk Factors
19.
Mutat Res ; 726(2): 123-8, 2011 Dec 24.
Article in English | MEDLINE | ID: mdl-21920457

ABSTRACT

Genotoxic effects of lead (0-20µM) were investigated in whole-plant roots of Vicia faba L., grown hydroponically under controlled conditions. Lead-induced DNA damage in V. faba roots was evaluated by use of the comet assay, which allowed the detection of DNA strand-breakage and with the V. faba micronucleus test, which revealed chromosome aberrations. The results clearly indicate that lead induced DNA fragmentation in a dose-dependant manner with a maximum effect at 10µM. In addition, at this concentration, DNA damage time-dependently increased until 12h. Then, a decrease in DNA damages was recorded. The significant induction of micronucleus formation also reinforced the genotoxic character of this metal. Direct interaction of lead with DNA was also evaluated with the a-cellular comet assay. The data showed that DNA breakages were not associated with a direct effect of lead on DNA. In order to investigate the relationship between lead genotoxicity and oxidative stress, V. faba were exposed to lead in the presence or absence of the antioxidant Vitamin E, or the NADPH-oxidase inhibitor dephenylene iodonium (DPI). The total inhibition of the genotoxic effects of lead (DNA breakage and micronucleus formation) by these compounds reveals the major role of reactive oxygen species (ROS) in the genotoxicity of lead. These results highlight, for the first time in vivo and in whole-plant roots, the relationship between ROS, DNA strand-breaks and chromosome aberrations induced by lead.


Subject(s)
DNA Damage/drug effects , Lead/toxicity , Mutagens/toxicity , Oxidative Stress/genetics , Plant Roots/drug effects , Chromosome Aberrations , Comet Assay , Lead/metabolism , Micronucleus Tests , Vicia faba/drug effects , Vitamin E/pharmacology
20.
Sci Total Environ ; 409(21): 4504-10, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21871650

ABSTRACT

Aided phytostabilisation is a cost-efficient technique to manage metal-contaminated areas, particularly in the presence of extensive pollution. Plant establishment and survival in highly metal-contaminated soils are crucial for phytostabilisation success, as metal toxicity for plants is widely reported. A relevant phytostabilisation solution must limit metal transfer through the food chain. Therefore, this study aimed at evaluating the long-term efficiency of aided phytostabilisation on former agricultural soils highly contaminated by cadmium, lead, and zinc. The influence of afforestation and fly ash amendments on reducing metal phytoavailability was investigated as were their effects on plant development. Before being planted with a tree mix, the site was divided into three plots: a reference plot with no amendment, a plot amended with silico-aluminous fly ash and one with sulfo-calcic fly ash. Unlike Salix alba and Quercus robur, Alnus glutinosa, Acer pseudoplatanus and Robinia pseudoacacia grew well on the site and accumulated, overall, quite low concentrations of metals in their leaves and young twigs. This suggests that these three species have an excluder phenotype for Cd, Zn and Pb. After 8 years, metal availability to A. glutinosa, A. pseudoplatanus and R. pseudoacacia, and translocation to their above-ground parts, strongly decreased in fly ash-amended soils. Such decreases fit well together with the depletion of CaCl(2)-extractable metals in amended soils. Although both fly ashes were effective to decrease Cd, Pb and Zn concentrations in above-ground parts of trees, the sulfo-calcic ash was more efficient.


Subject(s)
Carbon/metabolism , Environmental Restoration and Remediation/methods , Metals, Heavy/metabolism , Particulate Matter/metabolism , Plant Physiological Phenomena , Plants/drug effects , Soil Pollutants/metabolism , Soil/chemistry , Biodegradation, Environmental , Cadmium/analysis , Cadmium/metabolism , Carbon/chemistry , Coal Ash/chemistry , Coal Ash/metabolism , France , Kinetics , Lead/analysis , Lead/metabolism , Metals, Heavy/analysis , Particulate Matter/analysis , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Stems/chemistry , Plant Stems/metabolism , Soil Pollutants/analysis , Trace Elements/analysis , Trace Elements/metabolism , Trees/chemistry , Trees/metabolism , Zinc/analysis , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...